Home
Class 14
MATHS
1+(1)/(2)+(1)/(4)+(1)/(7)+(1)/(14)+(1)/(...

`1+(1)/(2)+(1)/(4)+(1)/(7)+(1)/(14)+(1)/(28)` is equal to:

A

2

B

2.5

C

3

D

3.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{7} + \frac{1}{14} + \frac{1}{28} \), we will follow these steps: ### Step 1: Identify the denominators The denominators in the expression are \( 1, 2, 4, 7, 14, \) and \( 28 \). ### Step 2: Find the Least Common Multiple (LCM) To add these fractions, we need a common denominator. The LCM of \( 1, 2, 4, 7, 14, \) and \( 28 \) is \( 28 \). ### Step 3: Rewrite each term with the common denominator Now, we will rewrite each fraction with \( 28 \) as the denominator: - \( 1 = \frac{28}{28} \) - \( \frac{1}{2} = \frac{14}{28} \) - \( \frac{1}{4} = \frac{7}{28} \) - \( \frac{1}{7} = \frac{4}{28} \) - \( \frac{1}{14} = \frac{2}{28} \) - \( \frac{1}{28} = \frac{1}{28} \) ### Step 4: Combine the fractions Now we can add all the fractions together: \[ \frac{28}{28} + \frac{14}{28} + \frac{7}{28} + \frac{4}{28} + \frac{2}{28} + \frac{1}{28} = \frac{28 + 14 + 7 + 4 + 2 + 1}{28} \] ### Step 5: Calculate the numerator Now, let's calculate the sum of the numerators: \[ 28 + 14 + 7 + 4 + 2 + 1 = 56 \] ### Step 6: Write the final fraction So, we have: \[ \frac{56}{28} \] ### Step 7: Simplify the fraction Now we can simplify \( \frac{56}{28} \): \[ \frac{56}{28} = 2 \] ### Final Answer Thus, the value of \( 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{7} + \frac{1}{14} + \frac{1}{28} \) is \( 2 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

1 + frac(1)(2) + frac(1) (4) + frac(1)(7) + frac(1)(14) + frac(1)(28) is equal to

2(1)/(7)-3(1)/(14)+2(2)/(7)=?

4(3)/(7)-1(3)/(14)=?+2(3)/(28)1(3)/(28)(b)3(1)/(14) (c) 3(3)/(14) (d) 3(1)/(28) (e) None of these

(1)/((2(1)/(3)))+(1)/((1(3)/(4))) is equal to (a) (7)/(14) (b) (12)/(49) (c) 4(1)/(12) (d) None of these

int x^(-7)(1+x^(4))^(-1/2)dx is equal to

int x^(-7)(1+x^(4))^(-1/2)dx is equal to