Home
Class 14
MATHS
Simplify : [root(3)root(6)(5^(9))]^(4)[r...

Simplify : `[root(3)root(6)(5^(9))]^(4)[root(3)root(6)(5^(9)]]^(4)`

A

`5^(2)`

B

`5^(4)`

C

`5^(8)`

D

`5^(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \([ \sqrt[3]{\sqrt{6}(5^{9})}]^{4}[\sqrt[3]{\sqrt{6}(5^{9})}]^{4}\), we can follow these steps: ### Step 1: Rewrite the expression The expression can be rewritten as: \[ \left(\sqrt[3]{\sqrt{6} \cdot 5^{9}}\right)^{4} \cdot \left(\sqrt[3]{\sqrt{6} \cdot 5^{9}}\right)^{4} \] ### Step 2: Combine the powers Since both parts of the expression are the same, we can combine them: \[ \left(\sqrt[3]{\sqrt{6} \cdot 5^{9}}\right)^{4 + 4} = \left(\sqrt[3]{\sqrt{6} \cdot 5^{9}}\right)^{8} \] ### Step 3: Simplify the cube root Next, we simplify the cube root: \[ \sqrt[3]{\sqrt{6} \cdot 5^{9}} = (\sqrt{6})^{\frac{1}{3}} \cdot (5^{9})^{\frac{1}{3}} = (6^{\frac{1}{2}})^{\frac{1}{3}} \cdot 5^{3} = 6^{\frac{1}{6}} \cdot 5^{3} \] ### Step 4: Substitute back into the expression Now, substitute this back into the expression: \[ \left(6^{\frac{1}{6}} \cdot 5^{3}\right)^{8} \] ### Step 5: Apply the power of a product rule Using the power of a product rule, we can distribute the exponent: \[ (6^{\frac{1}{6}})^{8} \cdot (5^{3})^{8} = 6^{\frac{8}{6}} \cdot 5^{24} \] ### Step 6: Simplify the exponent of 6 Now simplify \(6^{\frac{8}{6}}\): \[ 6^{\frac{8}{6}} = 6^{\frac{4}{3}} \] ### Step 7: Final expression Combining everything, we get: \[ 6^{\frac{4}{3}} \cdot 5^{24} \] ### Conclusion Thus, the simplified form of the given expression is: \[ 6^{\frac{4}{3}} \cdot 5^{24} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: [root(3)(root(6)(5^(9)))]^(8)[root(6)(root(3)(5^(9)))]^(8)

Simplify [root(3)(root(6)(2^(9)))]^(4)xx[root(6)(root(3)(2^(9)))]^(4) .

The expression [root(3)(root(6)(a^(9)))]^(4)[root(6)(root(3)(a^(9)))]^(4) is simplified to a.a ^(16) b.a^(12) c.a^(8) d.a^(4)

root(5)(root(4)(3^2))

The expression (root(3)(root(6)(a^(9))))^(4)(root(6)(root(3)(a^(9))))^(4) is simplified to a^(16)(b)a^(12)(c)a^(8)(d)a^(4)

Simplify : (root6(27)-sqrt(6(3)/4))^(2)