Home
Class 14
MATHS
If log10 2 = 0.3010 is given, then log2 ...

If `log_10 2 = 0.3010` is given, then `log_2 10` is equal to :

A

0.301

B

0.699

C

`(1000)/301`

D

`699/301`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_2 10 \) given that \( \log_{10} 2 = 0.3010 \). ### Step-by-Step Solution: 1. **Use the Change of Base Formula**: The change of base formula for logarithms states that: \[ \log_a b = \frac{\log_c b}{\log_c a} \] We can use this formula to express \( \log_2 10 \) in terms of base 10 logarithms: \[ \log_2 10 = \frac{\log_{10} 10}{\log_{10} 2} \] 2. **Evaluate \( \log_{10} 10 \)**: The logarithm of a number to its own base is always 1: \[ \log_{10} 10 = 1 \] 3. **Substitute the Values**: Now we can substitute the values we have into the equation: \[ \log_2 10 = \frac{1}{\log_{10} 2} \] Given that \( \log_{10} 2 = 0.3010 \), we substitute this value: \[ \log_2 10 = \frac{1}{0.3010} \] 4. **Calculate \( \frac{1}{0.3010} \)**: To simplify \( \frac{1}{0.3010} \), we can multiply the numerator and denominator by 10000 to eliminate the decimal: \[ \log_2 10 = \frac{10000}{3010} \] 5. **Simplify the Fraction**: Now we can simplify \( \frac{10000}{3010} \). Dividing both the numerator and denominator by 10 gives: \[ \log_2 10 = \frac{1000}{301} \] ### Final Answer: Thus, the value of \( \log_2 10 \) is: \[ \log_2 10 = \frac{1000}{301} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10)2 = 0.3010 , then log_(10) 2000 =

If "log"_(10) 2 = 0.3010, "then log"_(5) 64=

If log_(10)2= 0.3010 , then log_(10)5 = _______

If log_(10)2=0.3010 , then the value of log_(10)80 is

If log 2 = 0.3010, then log 5 = ______.

If log_(10) 2=0.3010 then log_2 10=