Home
Class 14
MATHS
If p : q = r : s = t : u = 2 : 3, then (...

If p : q = r : s = t : u = 2 : 3, then (mp + nr + ot) : mq + ns + ou) is equal to :

A

`1 : 3`

B

`1 : 2`

C

`2 : 3`

D

`3 :2 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \((mp + nr + ot) : (mq + ns + ou)\) given that \(p : q = r : s = t : u = 2 : 3\). ### Step-by-Step Solution: 1. **Understand the Ratios**: We know that \(p : q = 2 : 3\), \(r : s = 2 : 3\), and \(t : u = 2 : 3\). This means we can express \(p\), \(r\), and \(t\) in terms of \(q\), \(s\), and \(u\) respectively. - From \(p : q = 2 : 3\), we can write: \[ p = \frac{2}{3}q \] - From \(r : s = 2 : 3\), we can write: \[ r = \frac{2}{3}s \] - From \(t : u = 2 : 3\), we can write: \[ t = \frac{2}{3}u \] 2. **Substitute Values into the Expression**: We need to substitute these values into the expression \(mp + nr + ot\) and \(mq + ns + ou\). - Substitute \(p\), \(r\), and \(t\): \[ mp + nr + ot = m\left(\frac{2}{3}q\right) + n\left(\frac{2}{3}s\right) + o\left(\frac{2}{3}u\right) \] This simplifies to: \[ = \frac{2}{3}(mq + ns + ou) \] 3. **Write the Denominator**: The denominator remains as: \[ mq + ns + ou \] 4. **Form the Ratio**: Now we can form the ratio: \[ (mp + nr + ot) : (mq + ns + ou) = \left(\frac{2}{3}(mq + ns + ou)\right) : (mq + ns + ou) \] 5. **Simplify the Ratio**: We can simplify this ratio: \[ = \frac{2}{3} : 1 \] This can also be expressed as: \[ = 2 : 3 \] ### Final Answer: Thus, the final ratio is: \[ \boxed{2 : 3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If p:q=r:s=t:u=2:3, then find (mp+nr+ot):(mq+ns+ou)

If P: Q = 2 : 3 , Q : R = 5 : 7 and R : S = 3 : 10 then P : S = ?