Home
Class 14
MATHS
If a : b = c : d = e : f = 1 : 2, then ...

If a : b = c : d = e : f = 1 : 2, then `(pa + qc + re) : (pb + qd + rf)` is equal to :

A

`p : (q + r) `

B

`(p + q) : r`

C

`2 : 3`

D

`1 : 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratios and express the variables in terms of a common variable. 1. **Given Ratios**: We have \( a : b = c : d = e : f = 1 : 2 \). This means: - \( \frac{a}{b} = \frac{1}{2} \) - \( \frac{c}{d} = \frac{1}{2} \) - \( \frac{e}{f} = \frac{1}{2} \) 2. **Expressing Variables**: From the ratios, we can express \( a, c, e \) in terms of \( b, d, f \): - \( a = \frac{1}{2}b \) - \( c = \frac{1}{2}d \) - \( e = \frac{1}{2}f \) 3. **Substituting into the Expression**: We need to find the ratio \( (pa + qc + re) : (pb + qd + rf) \). - Substitute \( a, c, e \): \[ pa + qc + re = p\left(\frac{1}{2}b\right) + q\left(\frac{1}{2}d\right) + r\left(\frac{1}{2}f\right) \] - This simplifies to: \[ = \frac{1}{2}(pb + qd + rf) \] 4. **Final Ratio Calculation**: Now, we can express the entire ratio: \[ \frac{(pa + qc + re)}{(pb + qd + rf)} = \frac{\frac{1}{2}(pb + qd + rf)}{(pb + qd + rf)} \] - This simplifies to: \[ = \frac{1}{2} \] 5. **Conclusion**: Therefore, the ratio \( (pa + qc + re) : (pb + qd + rf) \) is equal to \( \frac{1}{2} \). ### Final Answer: The answer is \( \frac{1}{2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a ; b=c : d=e :f=1:2, t h e n (3a+5c+7e):(3b=5d+7f) 1:2 b. 1:4 c. 2:1 d. 8:7

If a, b, c, d, e, f are in A.P., then e – c is equal to