Home
Class 14
MATHS
(sqrt72 - sqrt18) / sqrt12 is equal to :...

`(sqrt72 - sqrt18) / sqrt12` is equal to :

A

`sqrt6`

B

`sqrt3//2`

C

`sqrt2 //3`

D

`sqrt6//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{72} - \sqrt{18}) / \sqrt{12}\), we will follow these steps: ### Step 1: Simplify \(\sqrt{72}\) First, we factor \(72\): \[ 72 = 2^3 \times 3^2 \] Now, we can simplify \(\sqrt{72}\): \[ \sqrt{72} = \sqrt{2^3 \times 3^2} = \sqrt{(2^2 \times 3^2) \times 2} = \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2} = 6\sqrt{2} \] **Hint:** Factor the number inside the square root to find perfect squares. ### Step 2: Simplify \(\sqrt{18}\) Next, we factor \(18\): \[ 18 = 2 \times 3^2 \] Now, we simplify \(\sqrt{18}\): \[ \sqrt{18} = \sqrt{2 \times 3^2} = \sqrt{(3^2) \times 2} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \] **Hint:** Look for pairs of factors to simplify the square root. ### Step 3: Simplify \(\sqrt{12}\) Now, we factor \(12\): \[ 12 = 2^2 \times 3 \] We can simplify \(\sqrt{12}\): \[ \sqrt{12} = \sqrt{2^2 \times 3} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3} \] **Hint:** Again, find perfect squares to simplify the square root. ### Step 4: Substitute back into the expression Now we substitute back into the original expression: \[ \frac{\sqrt{72} - \sqrt{18}}{\sqrt{12}} = \frac{6\sqrt{2} - 3\sqrt{2}}{2\sqrt{3}} \] ### Step 5: Combine like terms in the numerator Now, we simplify the numerator: \[ 6\sqrt{2} - 3\sqrt{2} = (6 - 3)\sqrt{2} = 3\sqrt{2} \] ### Step 6: Write the expression as a fraction Now, we have: \[ \frac{3\sqrt{2}}{2\sqrt{3}} \] ### Step 7: Rationalize the denominator To rationalize the denominator, we multiply the numerator and denominator by \(\sqrt{3}\): \[ \frac{3\sqrt{2} \cdot \sqrt{3}}{2\sqrt{3} \cdot \sqrt{3}} = \frac{3\sqrt{6}}{2 \cdot 3} = \frac{3\sqrt{6}}{6} = \frac{\sqrt{6}}{2} \] ### Final Answer Thus, the final answer is: \[ \frac{\sqrt{6}}{2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt72 xx sqrt98= ?

(2sqrt(27)-sqrt(75)+sqrt(12)) is equal to sqrt(3)(b)2sqrt(3) (c) 3sqrt(3)(d)4sqrt(3)

2sqrt3-sqrt3-3sqrt3+sqrt(12) is equal to

(12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to