Home
Class 14
MATHS
the value of (sqrt80 - sqrt112)/(sqrt45 ...

the value of `(sqrt80 - sqrt112)/(sqrt45 - sqrt63)` is :

A

`3/4`

B

`1 3/4`

C

`1 1/3`

D

`1 7/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{80} - \sqrt{112}) / (\sqrt{45} - \sqrt{63})\), we will simplify both the numerator and the denominator step by step. ### Step 1: Simplify the square roots in the numerator We can express \(\sqrt{80}\) and \(\sqrt{112}\) in terms of their prime factors: - \(\sqrt{80} = \sqrt{16 \times 5} = \sqrt{16} \times \sqrt{5} = 4\sqrt{5}\) - \(\sqrt{112} = \sqrt{16 \times 7} = \sqrt{16} \times \sqrt{7} = 4\sqrt{7}\) So, the numerator becomes: \[ \sqrt{80} - \sqrt{112} = 4\sqrt{5} - 4\sqrt{7} = 4(\sqrt{5} - \sqrt{7}) \] ### Step 2: Simplify the square roots in the denominator Now, we simplify \(\sqrt{45}\) and \(\sqrt{63}\): - \(\sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5}\) - \(\sqrt{63} = \sqrt{9 \times 7} = \sqrt{9} \times \sqrt{7} = 3\sqrt{7}\) So, the denominator becomes: \[ \sqrt{45} - \sqrt{63} = 3\sqrt{5} - 3\sqrt{7} = 3(\sqrt{5} - \sqrt{7}) \] ### Step 3: Substitute back into the expression Now we substitute the simplified numerator and denominator back into the expression: \[ \frac{\sqrt{80} - \sqrt{112}}{\sqrt{45} - \sqrt{63}} = \frac{4(\sqrt{5} - \sqrt{7})}{3(\sqrt{5} - \sqrt{7})} \] ### Step 4: Cancel the common terms Since \(\sqrt{5} - \sqrt{7}\) is common in both the numerator and the denominator, we can cancel it out (assuming \(\sqrt{5} \neq \sqrt{7}\)): \[ = \frac{4}{3} \] ### Step 5: Convert to mixed fraction (if needed) The fraction \(\frac{4}{3}\) can be expressed as a mixed number: \[ 4 \div 3 = 1 \quad \text{with a remainder of } 1 \] Thus, it can be written as: \[ 1 \frac{1}{3} \] ### Final Answer The value of \((\sqrt{80} - \sqrt{112}) / (\sqrt{45} - \sqrt{63})\) is \(\frac{4}{3}\) or \(1 \frac{1}{3}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sqrt(80)-sqrt(112))/(sqrt(45)-sqrt(63)) is (3)/(4) (b) 1(1)/(3) (c) 1(7)/(9)( d) 1(3)/(4)

The value of sqrt(2 + sqrt(3)) + sqrt(2 - sqrt(3)) is

6.The value of (sqrt(5)+sqrt(2))(sqrt(5)-sqrt(2)) is:

Find the value of sqrt80+3sqrt245-sqrt125 .

The value of (sqrt63 xx sqrt7)/(root3(27)) is