Home
Class 14
MATHS
((785 xx 785 xx 785+ 435 xx 435 xx 435)/...

`((785 xx 785 xx 785+ 435 xx 435 xx 435)/((785)^2 + (435)^2-(785)(435)))` simplifies to :

A

350

B

785

C

1220

D

1320

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{785^3 + 435^3}{785^2 + 435^2 - 785 \cdot 435}\), we can follow these steps: ### Step 1: Identify Variables Let \(a = 785\) and \(b = 435\). This allows us to rewrite the expression in terms of \(a\) and \(b\): \[ \frac{a^3 + b^3}{a^2 + b^2 - ab} \] ### Step 2: Use the Formula for Sum of Cubes Recall the algebraic identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Thus, we can rewrite the numerator: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] ### Step 3: Simplify the Denominator Now, we can also express the denominator: \[ a^2 + b^2 - ab \] This is already in a suitable form. ### Step 4: Substitute into the Expression Substituting the expressions for the numerator and denominator into our original fraction gives: \[ \frac{(a + b)(a^2 - ab + b^2)}{a^2 + b^2 - ab} \] ### Step 5: Cancel Common Terms Notice that \(a^2 - ab + b^2\) can be rewritten as \(a^2 + b^2 - ab\) in the denominator. Therefore, we can cancel \(a^2 + b^2 - ab\) from both the numerator and denominator: \[ = a + b \] ### Step 6: Substitute Back the Values of \(a\) and \(b\) Now, substituting back the values of \(a\) and \(b\): \[ = 785 + 435 \] ### Step 7: Perform the Addition Calculating the sum: \[ 785 + 435 = 1220 \] ### Final Answer Thus, the simplified expression is: \[ \frac{785^3 + 435^3}{785^2 + 435^2 - 785 \cdot 435} = 1220 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

((785xx785xx785+435xx435xx435)/(785xx785+435xx435-785xx435)) simplifies to (a) 350 (b) 785 (c) 1220 (d) 1320 .

The value of (4.35 xx 4.35 xx 4.35 + 3.25 xx 3.25 xx 3.25)/(43.5 xx 43.5 + 32.5 xx 32.5 -43.5 xx 32.5) is : (4.35 xx 4.35 xx 4.35 + 3.25 xx 3.25 xx 3.25)/(43.5 xx 43.5 + 32.5 xx 32.5 -43.5 xx 32.5) का मान ज्ञात करें:

235 : 587 : : 435 :?

2 6 15 30 45 43.5 22.5

43.5-17.27+246.3

435: 768 :: 324:? (A) 657 (B) 567 (C) 765 (D) 675

165, 195, 255, 285, 345, (.......) (a) 375 (b) 420 (c) 435 (d) 390