Home
Class 14
MATHS
When simplified the product (1-1/3)(1-1/...

When simplified the product `(1-1/3)(1-1/4)(1-1/5)......(1-1/n)`
becomes :

A

`1/n`

B

`2/n`

C

`(2(n-1))/n`

D

`2/(n(n+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the product \((1 - \frac{1}{3})(1 - \frac{1}{4})(1 - \frac{1}{5}) \ldots (1 - \frac{1}{n})\), we can follow these steps: ### Step 1: Rewrite each term in the product Each term in the product can be rewritten as follows: \[ 1 - \frac{1}{k} = \frac{k - 1}{k} \] where \(k\) takes values from 3 to \(n\). Therefore, we can express the entire product as: \[ \prod_{k=3}^{n} \left(1 - \frac{1}{k}\right) = \prod_{k=3}^{n} \frac{k - 1}{k} \] ### Step 2: Expand the product Now, we can expand the product: \[ \prod_{k=3}^{n} \frac{k - 1}{k} = \frac{2}{3} \cdot \frac{3 - 1}{4} \cdot \frac{4 - 1}{5} \cdots \frac{n - 1}{n} \] This can be simplified as: \[ = \frac{2}{3} \cdot \frac{2}{4} \cdot \frac{3}{5} \cdots \frac{n - 1}{n} \] ### Step 3: Identify the pattern Notice that in the product, the numerator of each fraction cancels with the denominator of the next fraction. Thus, we can see that: \[ = \frac{2}{n} \] ### Step 4: Final result Therefore, the simplified product is: \[ \frac{2}{n} \] ### Conclusion The final result of the product \((1 - \frac{1}{3})(1 - \frac{1}{4})(1 - \frac{1}{5}) \ldots (1 - \frac{1}{n})\) simplifies to \(\frac{2}{n}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

When simplified the product (1 - 1/2) (1 - 1/3) (1 - 1/4) .........(1-1/n) gives :

(1-1/3)(1-1/4)(1-1/5)…(1-1/n) equals:

simplified value of (1-1/3)(1-1/4)(1-1/5)......(1-1/99 )(1-1/100) is

(1 - 1/3) (1 - 1/4)(1 - 1/5)………(1 - 1/n) equals:

The value of (1-1/2)(1-1/3)(1-1/4)(1-1/5)…(1-1/n) is :

The simplified value of (1-1/3) (1- 1/4) (1-1/5) …(1-1/(99)) (1- (1)/(100)) is

(-(1)/(3))(1-(1)/(4))(1-(1)/(5))......*(1-(1)/(n))=x