Home
Class 14
MATHS
The value of sqrt(((0.1)^2+(0.01)^2+...

The value of
`sqrt(((0.1)^2+(0.01)^2+(0.009)^2)/((0.01)^2+(0.001)^2+(0.0009)^2))` is

A

`10^2`

B

`10`

C

0.1

D

0.01

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \sqrt{\frac{(0.1)^2 + (0.01)^2 + (0.009)^2}{(0.01)^2 + (0.001)^2 + (0.0009)^2}} \] we will follow these steps: ### Step 1: Calculate the squares of the numbers in the numerator Calculate each term in the numerator: - \((0.1)^2 = 0.01\) - \((0.01)^2 = 0.0001\) - \((0.009)^2 = 0.000081\) Now, add these values together: \[ 0.01 + 0.0001 + 0.000081 = 0.010181 \] ### Step 2: Calculate the squares of the numbers in the denominator Calculate each term in the denominator: - \((0.01)^2 = 0.0001\) - \((0.001)^2 = 0.000001\) - \((0.0009)^2 = 0.00000081\) Now, add these values together: \[ 0.0001 + 0.000001 + 0.00000081 = 0.00010181 \] ### Step 3: Form the fraction Now we can form the fraction: \[ \frac{0.010181}{0.00010181} \] ### Step 4: Simplify the fraction To simplify this fraction, we can divide both the numerator and the denominator by \(0.00010181\): \[ \frac{0.010181 \div 0.00010181}{0.00010181 \div 0.00010181} = \frac{100.0001}{1} \approx 100 \] ### Step 5: Take the square root Now, we take the square root of the simplified fraction: \[ \sqrt{100} = 10 \] ### Final Answer Thus, the value of the expression is \[ \boxed{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ((0.01)^(2)+(0.22)^(2)+(0.333)^(2))/((0.001)^(2)+(0.022)^(2)+(0.0333)^(2))

The value of ((0.03)^2-(0.01)^2)/(0.03 - 0.01) is :

What is the value of 1//(0.1)^2+1//(0.01)^2+1//(0.5)^2+1//(0.05)^2 ? 1//(0.1)^2+1//(0.01)^2+1//(0.5)^2+1//(0.05)^2 का मान क्या है?

The value of ((0.96)^(3)-(0.1)^(3))/((0.96)^(2)+(0.096)+0.01) is