Home
Class 14
MATHS
Find the value of : (0.98)^3+(0.02)^3 ...

Find the value of :
`(0.98)^3+(0.02)^3 + 3xx 0.98 xx 0.02-1`

A

1.98

B

1.09

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (0.98)^3 + (0.02)^3 + 3 \times 0.98 \times 0.02 - 1 \), we can recognize that it resembles the expansion of a cube. ### Step-by-step solution: 1. **Identify the terms**: The expression consists of three parts: - \( (0.98)^3 \) - \( (0.02)^3 \) - \( 3 \times 0.98 \times 0.02 \) 2. **Recognize the formula**: The expression can be recognized as the expansion of \( a^3 + b^3 + 3ab(a + b) \), where: - \( a = 0.98 \) - \( b = 0.02 \) 3. **Apply the formula**: According to the formula, we can rewrite the expression as: \[ (a + b)^3 - 1 \] Here, \( a + b = 0.98 + 0.02 = 1 \). 4. **Calculate \( (a + b)^3 \)**: \[ (1)^3 = 1 \] 5. **Subtract 1**: Now, substituting back into the expression: \[ 1 - 1 = 0 \] Thus, the value of the expression \( (0.98)^3 + (0.02)^3 + 3 \times 0.98 \times 0.02 - 1 \) is \( 0 \). ### Final Answer: \[ \text{The value is } 0. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x: 0.5x-(0.8-0.2x) = 0.2-0.3x

Find the value of x: 0.5x-(0.8-0.2x) = 0.2-0.3x

Find the value of ((0.2 xx 0.14) + (0.5 xx 0.91))/(0.1 xx 0.2)

The value of (.98)^(3)+(.02)^(3)+3xx.98xx.02-1 is (a) 0 (b) 1(c)1.09(d)1.98

Find the value of frac((0.0112 - 0.0012) xx 0.14 + 0.025 xx 0.2 )(0.02 xx 0.01)

0.2 xx 0.3 = 0.6