Home
Class 14
MATHS
If 1^3 + 2^3 +3^3 +.....10^3 = 3025 , th...

If `1^3 + 2^3 +3^3 +.....10^3` = 3025 , then find the value of `2^3+4^3+6^3 + .....+ 20^3`

A

6050

B

9075

C

12100

D

24200

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(2^3 + 4^3 + 6^3 + \ldots + 20^3\). ### Step-by-Step Solution: 1. **Identify the series**: The series \(2^3 + 4^3 + 6^3 + \ldots + 20^3\) consists of the cubes of the first 10 even numbers. 2. **Rewrite the series**: We can express the even numbers in terms of their position in the series: \[ 2^3 + 4^3 + 6^3 + \ldots + 20^3 = (2 \cdot 1)^3 + (2 \cdot 2)^3 + (2 \cdot 3)^3 + \ldots + (2 \cdot 10)^3 \] 3. **Factor out the common term**: Since each term is multiplied by 2, we can factor out \(2^3\) from the series: \[ = 2^3 \cdot (1^3 + 2^3 + 3^3 + \ldots + 10^3) \] 4. **Use the given value**: We know from the problem statement that \(1^3 + 2^3 + 3^3 + \ldots + 10^3 = 3025\). Therefore: \[ = 2^3 \cdot 3025 \] 5. **Calculate \(2^3\)**: We know that \(2^3 = 8\). 6. **Multiply**: Now we can multiply: \[ 8 \cdot 3025 = 24200 \] Thus, the value of \(2^3 + 4^3 + 6^3 + \ldots + 20^3\) is **24200**. ### Final Answer: \[ \boxed{24200} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 10^-3,6^-5,3^3

If 1^3+2^3+...+m^3=3025 then m=

What is the value of 1^(3) + 2^(3) + 3^(3) + . . . . + 10^(3) ?

Find the value of ( 1^3 + 2^3 + 3^3 )^(-3/2)

Find the value of ( 1^3 + 2^3 + 3^3 ) ^(-1/2)

Find the value of ( 3^2 - 4 ) - ( 3 -2 ) ( 3 + 2 )