Home
Class 14
MATHS
If a : b=2 : 3 and b: c =4: 5,find a^2 :...

If a : b=2 : 3 and b: c =4: 5,find `a^2 : b^2 : bc`

A

`4: 9 : 5`

B

`16 : 36 : 45`

C

`16 : 36:20`

D

`4:36:40`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( a^2 : b^2 : bc \) given the ratios \( a : b = 2 : 3 \) and \( b : c = 4 : 5 \). ### Step-by-Step Solution: 1. **Express Ratios in Terms of a Common Variable:** - From the ratio \( a : b = 2 : 3 \), we can express \( a \) and \( b \) in terms of a variable \( k \): \[ a = 2k \quad \text{and} \quad b = 3k \] 2. **Express c in Terms of b:** - From the ratio \( b : c = 4 : 5 \), we can express \( b \) and \( c \) in terms of another variable \( m \): \[ b = 4m \quad \text{and} \quad c = 5m \] 3. **Equate the Values of b:** - We have two expressions for \( b \): \[ 3k = 4m \] - From this equation, we can express \( k \) in terms of \( m \): \[ k = \frac{4m}{3} \] 4. **Substitute k back to find a and b:** - Substitute \( k \) into the expressions for \( a \) and \( b \): \[ a = 2k = 2 \left(\frac{4m}{3}\right) = \frac{8m}{3} \] \[ b = 3k = 3 \left(\frac{4m}{3}\right) = 4m \] - We already have \( c = 5m \). 5. **Calculate \( a^2, b^2, \) and \( bc \):** - Now we can calculate \( a^2, b^2, \) and \( bc \): \[ a^2 = \left(\frac{8m}{3}\right)^2 = \frac{64m^2}{9} \] \[ b^2 = (4m)^2 = 16m^2 \] \[ bc = (4m)(5m) = 20m^2 \] 6. **Express the Ratios:** - Now we need to express \( a^2 : b^2 : bc \): \[ a^2 : b^2 : bc = \frac{64m^2}{9} : 16m^2 : 20m^2 \] - To eliminate \( m^2 \), we can divide each term by \( m^2 \): \[ = \frac{64}{9} : 16 : 20 \] 7. **Find a Common Denominator:** - To express this in a simpler ratio, we can convert each term to have a common denominator. The least common multiple of \( 9, 1, \) and \( 1 \) is \( 9 \): \[ = \frac{64}{9} : \frac{144}{9} : \frac{180}{9} \] - This simplifies to: \[ = 64 : 144 : 180 \] 8. **Simplify the Ratio:** - Now, we can simplify this ratio by dividing each term by the greatest common divisor (GCD). The GCD of \( 64, 144, \) and \( 180 \) is \( 4 \): \[ = \frac{64 \div 4}{4} : \frac{144 \div 4}{4} : \frac{180 \div 4}{4} = 16 : 36 : 45 \] ### Final Answer: Thus, the final ratio is: \[ a^2 : b^2 : bc = 16 : 36 : 45 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a:b = 3 : 2 and b : c = 2 : 5, find a : c.

If a: b is 3: 4 and b: c is 2: 5. Find a: b: c.

If a:b = 5:6 and b:c = 3:4, then find a:b:c.

If a:b=2:3 and b:c=5:7 then find a:c and a:b:c

If a : b = 2 : 3, b : c = 3 : 4, c : d = 4 : 5, find a : b : c : d.

If a:b=4:5 and b:c=2:3, then a:c=

If a:b=2:3 , b:c=4:5 and c=15 , then a^2-b=?

If a:b = 2:3 and b:c = 3:4, then a:c = _____.