Home
Class 14
MATHS
If x = (a-b)/(a+b) , y = (b-c)/(b+c), z ...

If `x = (a-b)/(a+b) , y = (b-c)/(b+c), z = (c-a)/(c+a) , " then " ((1-x)(1-y)(1-z))/((1+x)(1+y)(1+z))` is equal to

A

1

B

0

C

2

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \(\frac{(1-x)(1-y)(1-z)}{(1+x)(1+y)(1+z)}\) given the definitions of \(x\), \(y\), and \(z\): 1. **Substituting the values of x, y, and z:** - \(x = \frac{a-b}{a+b}\) - \(y = \frac{b-c}{b+c}\) - \(z = \frac{c-a}{c+a}\) We will substitute these values into the expression. 2. **Calculating \(1-x\), \(1-y\), and \(1-z\):** - \(1 - x = 1 - \frac{a-b}{a+b} = \frac{(a+b) - (a-b)}{a+b} = \frac{2b}{a+b}\) - \(1 - y = 1 - \frac{b-c}{b+c} = \frac{(b+c) - (b-c)}{b+c} = \frac{2c}{b+c}\) - \(1 - z = 1 - \frac{c-a}{c+a} = \frac{(c+a) - (c-a)}{c+a} = \frac{2a}{c+a}\) 3. **Calculating \(1+x\), \(1+y\), and \(1+z\):** - \(1 + x = 1 + \frac{a-b}{a+b} = \frac{(a+b) + (a-b)}{a+b} = \frac{2a}{a+b}\) - \(1 + y = 1 + \frac{b-c}{b+c} = \frac{(b+c) + (b-c)}{b+c} = \frac{2b}{b+c}\) - \(1 + z = 1 + \frac{c-a}{c+a} = \frac{(c+a) + (c-a)}{c+a} = \frac{2c}{c+a}\) 4. **Substituting these into the expression:** \[ \frac{(1-x)(1-y)(1-z)}{(1+x)(1+y)(1+z)} = \frac{\left(\frac{2b}{a+b}\right) \left(\frac{2c}{b+c}\right) \left(\frac{2a}{c+a}\right)}{\left(\frac{2a}{a+b}\right) \left(\frac{2b}{b+c}\right) \left(\frac{2c}{c+a}\right)} \] 5. **Simplifying the expression:** - The \(2\)s in the numerator and denominator cancel out. - The expression simplifies to: \[ \frac{bca}{abc} = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(a-b)/(a+b), y=(b-c)/(b+c) and z=(c-a)/(c+a) , find the value of ((1+x)(1+y)(1+z))/((1-x)(1-y)(1-z))

If x=(a+b)/(a-b),y=(b+c)/(b-c),z=(c+a)/(c-a) then the value of ((2x+2)(4y+4)(z+1))/((x-1)(y-1)(z-1)) is equal to

If (x)/(b + c - a) = (y)/(c + a - b) = (z)/(a + b - c) , then value of x(b -c) + y(c -a) + z(a - b) is equal to

If (b)/(y) + (z)/(c) = 1 and (c)/(z) + (x)/(a) = 1 , then what is (ab + xy)/(b x) equal to ?

If (x)/(y+z)=a;backslash(y)/(z+x)=b and (z)/(x+y)=c then (1)/(1+a)+(1)/(1+b)+(1)/(1+c) is equal to (a) 2( b) 3(c)6(d)x+y+z

If x,y,z are in A.P.;ax,by,cz are in GP and (1)/(a),(1)/(b),(1)/(c) are in A.P., then (x)/(z)+(z)/(x) is equal to

If x =a/(b-c), y=b/(c-a), z = c/(a-b) , then what is the value of the following ? |{:(1,-x,x),(1,1,-y),(1,z,1):}|. |{:(1,1,-1),(1,1,-1),(1,3,1):}|