Home
Class 14
MATHS
(sqrt(7)+1)/(sqrt(7)-1)-(sqrt(7)-1)/(sqr...

`(sqrt(7)+1)/(sqrt(7)-1)-(sqrt(7)-1)/(sqrt(7)+1)=a+bsqrt(7)`

A

`sqrt(7), -1`

B

`(sqrt(7)), 1`

C

`0, - 2/3`

D

`-2/3,0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(7)+1)/(sqrt(7)-1)-(sqrt(7)-1)/(sqrt(7)+1)=a+b sqrt(7)

(1)/(sqrt(7)-sqrt(6))

(sqrt(7)-1)/(sqrt(7)+1)=(sqrt(7)+1)/(sqrt(7)-1) Find the value of A and B

(1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7)))

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

(5-sqrt(-7))(5+sqrt(-7))(2-sqrt(-1))(2+sqrt(-1))

Find the value of a and b if (7+3sqrt(5))/(3+sqrt(5))-(7-3sqrt(5))/(3-sqrt(5)) =a + bsqrt(5)

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?