Home
Class 14
MATHS
If x = (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2...

If `x = (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),` then `x^3 + 1/x^3` is equal to

A

98

B

1000

C

5

D

970

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + \frac{1}{x^3} \) given that \( x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \). ### Step 1: Simplify \( x \) We start with: \[ x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \] To simplify \( x \), we can multiply the numerator and the denominator by the conjugate of the denominator: \[ x = \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} \] ### Step 2: Calculate the denominator The denominator simplifies as follows: \[ (\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 - 2 = 1 \] ### Step 3: Calculate the numerator The numerator simplifies as follows: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{6} = 5 + 2\sqrt{6} \] ### Step 4: Combine results Thus, we have: \[ x = \frac{5 + 2\sqrt{6}}{1} = 5 + 2\sqrt{6} \] ### Step 5: Find \( \frac{1}{x} \) Now, we find \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{5 + 2\sqrt{6}} \] To rationalize this, multiply the numerator and denominator by the conjugate: \[ \frac{1}{x} = \frac{5 - 2\sqrt{6}}{(5 + 2\sqrt{6})(5 - 2\sqrt{6})} \] Calculating the denominator: \[ (5 + 2\sqrt{6})(5 - 2\sqrt{6}) = 25 - 24 = 1 \] Thus, \[ \frac{1}{x} = 5 - 2\sqrt{6} \] ### Step 6: Calculate \( x + \frac{1}{x} \) Now we can find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = (5 + 2\sqrt{6}) + (5 - 2\sqrt{6}) = 10 \] ### Step 7: Calculate \( x^2 + \frac{1}{x^2} \) Using the identity: \[ x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 \] we find: \[ x^2 + \frac{1}{x^2} = 10^2 - 2 = 100 - 2 = 98 \] ### Step 8: Calculate \( x^3 + \frac{1}{x^3} \) Using the identity: \[ x^3 + \frac{1}{x^3} = (x + \frac{1}{x})(x^2 + \frac{1}{x^2}) - (x + \frac{1}{x}) \] we find: \[ x^3 + \frac{1}{x^3} = 10 \cdot 98 - 10 = 980 - 10 = 970 \] ### Final Result Thus, the value of \( x^3 + \frac{1}{x^3} \) is: \[ \boxed{970} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(3+x)+sqrt(3-x))/(sqrt(3+x)-sqrt(3-x))=2 then x is equal to

If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

sqrt(x)-1/sqrt(x)= x=2-sqrt(3)