Home
Class 14
MATHS
If x =p cosec theta and y =q cot theta, ...

If x =p `cosec theta` and y =q `cot theta`, then the value of `(x^2)/(p^2)- (y^2)/(q^2)` is

A

`sin^2 theta`

B

`tan theta`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expressions for \( x \) and \( y \): 1. **Given:** \[ x = p \cdot \csc \theta \] \[ y = q \cdot \cot \theta \] 2. **We need to find:** \[ \frac{x^2}{p^2} - \frac{y^2}{q^2} \] 3. **Substituting the values of \( x \) and \( y \):** \[ \frac{x^2}{p^2} = \frac{(p \cdot \csc \theta)^2}{p^2} = \frac{p^2 \cdot \csc^2 \theta}{p^2} = \csc^2 \theta \] \[ \frac{y^2}{q^2} = \frac{(q \cdot \cot \theta)^2}{q^2} = \frac{q^2 \cdot \cot^2 \theta}{q^2} = \cot^2 \theta \] 4. **Now, we can rewrite the expression:** \[ \frac{x^2}{p^2} - \frac{y^2}{q^2} = \csc^2 \theta - \cot^2 \theta \] 5. **Using the trigonometric identity:** \[ \csc^2 \theta - \cot^2 \theta = 1 \] 6. **Thus, we find:** \[ \frac{x^2}{p^2} - \frac{y^2}{q^2} = 1 \] 7. **Final answer:** The value of \( \frac{x^2}{p^2} - \frac{y^2}{q^2} \) is \( 1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If cosec theta = 3x and cot theta = (3)/(x) , then find the value of (x^(2) - (1)/(x^(2))) .

If x ="cosec"theta - sin theta and y=sectheta - costheta , then the value of x^(2)y^(2)(x^(2) + y^(2) + 3) is:

If sin theta=p and cos theta=q then the value of (p-2p^(3))/(2q^(3)-q) is

If cosec theta + cot theta= p , cos theta = ?

If ^( If )=1-q tan theta and p^(2)sec^(2)theta=5+q^(2)tan^(2)thetap sec theta=1-q tan theta and p^(2)sec^(2)theta=5+q^(2)tan^(2)theta then the value of (9)/(p^(2))-(4)/(q^(2)) equals to

If x=sec theta+tan theta, y=cosec theta-cot theta then y=

If x=p sec theta+q tan theta&y=p tan theta+q sec theta then prove that x^(2)-y^(2)=p^(2)-q^(2)