Home
Class 14
MATHS
Find the value of sqrt(sqrt(sqrt(0.00000...

Find the value of `sqrt(sqrt(sqrt(0.00000256)))`

A

0.4

B

0.02

C

0.04

D

0.2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{\sqrt{\sqrt{0.00000256}}} \), we can follow these steps: ### Step 1: Rewrite the number in scientific notation First, we can express \( 0.00000256 \) in scientific notation. \[ 0.00000256 = 2.56 \times 10^{-6} \] ### Step 2: Take the first square root Now, we will take the square root of \( 2.56 \times 10^{-6} \). \[ \sqrt{2.56 \times 10^{-6}} = \sqrt{2.56} \times \sqrt{10^{-6}} \] Calculating each part: - \( \sqrt{2.56} = 1.6 \) - \( \sqrt{10^{-6}} = 10^{-3} \) So, \[ \sqrt{2.56 \times 10^{-6}} = 1.6 \times 10^{-3} \] ### Step 3: Take the second square root Next, we take the square root of \( 1.6 \times 10^{-3} \). \[ \sqrt{1.6 \times 10^{-3}} = \sqrt{1.6} \times \sqrt{10^{-3}} \] Calculating each part: - \( \sqrt{1.6} \approx 1.2649 \) - \( \sqrt{10^{-3}} = 10^{-1.5} = 10^{-1} \times 10^{-0.5} = 0.1 \times \sqrt{10} \approx 0.3162 \) So, \[ \sqrt{1.6 \times 10^{-3}} \approx 1.2649 \times 0.3162 \approx 0.4 \] ### Step 4: Take the third square root Finally, we take the square root of \( 0.4 \). \[ \sqrt{0.4} = \sqrt{\frac{4}{10}} = \frac{2}{\sqrt{10}} \approx \frac{2}{3.1623} \approx 0.6325 \] ### Final Result Thus, the value of \( \sqrt{\sqrt{\sqrt{0.00000256}}} \) is approximately \( 0.6325 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sqrt(7sqrt(7sqrt(7))) .

Find the value of sqrt(30-sqrt(30-sqrt(30...)))

Find the value of sqrt(6+sqrt(6+sqrt(6+...oo)))

Find the value of sqrt(6 - sqrt35)

Find the value of sqrt(6+sqrt(6+sqrt(6+...)))

Find the value of sqrt(162+sqrt(38+sqrt(121)))