Home
Class 14
MATHS
The value of tan 315^(@)cot(-405^(@)) is...

The value of tan `315^(@)cot(-405^(@))` is equal to

A

`-1`

B

`1`

C

`0`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan(315^\circ) \cot(-405^\circ) \), we can break it down step by step. ### Step 1: Simplify \( \tan(315^\circ) \) The angle \( 315^\circ \) can be rewritten as: \[ 315^\circ = 360^\circ - 45^\circ \] Using the identity \( \tan(360^\circ - \theta) = -\tan(\theta) \), we have: \[ \tan(315^\circ) = \tan(360^\circ - 45^\circ) = -\tan(45^\circ) \] Since \( \tan(45^\circ) = 1 \), it follows that: \[ \tan(315^\circ) = -1 \] ### Step 2: Simplify \( \cot(-405^\circ) \) The angle \( -405^\circ \) can be simplified by adding \( 360^\circ \) to it: \[ -405^\circ + 360^\circ = -45^\circ \] Using the identity \( \cot(-\theta) = -\cot(\theta) \), we have: \[ \cot(-405^\circ) = \cot(-45^\circ) = -\cot(45^\circ) \] Since \( \cot(45^\circ) = 1 \), it follows that: \[ \cot(-405^\circ) = -1 \] ### Step 3: Combine the results Now we can substitute back into the original expression: \[ \tan(315^\circ) \cot(-405^\circ) = (-1)(-1) = 1 \] ### Final Answer Thus, the value of \( \tan(315^\circ) \cot(-405^\circ) \) is: \[ \boxed{1} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan63^(@)-cot63^(@) is equal to

The value of tan(-405^@) is

the numerical value of tan20^(@)tan80^(@)cot50^(@) is equal to

tan(cot^(-1)x) is equal to

If tan^(2)theta+cot^(2)theta=52, then the value of tan^(2)theta+cot^(2)theta is equal to

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan alpha+cot alpha=a, then the value of tan^(4)alpha+cot^(4)alpha is equal to