Home
Class 14
MATHS
If tan(alpha-beta)=1, sec(alpha+beta)=2/...

If `tan(alpha-beta)=1, sec(alpha+beta)=2/(sqrt(3)` and `alpha, beta` are positive then the smallest value of `alpha` is

A

`142 (1^(@))/2`

B

`187 (1^(@))/2`

C

`7 (1^(@))/2`

D

`37 (1^(@))/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the smallest value of \( \alpha \) given the equations \( \tan(\alpha - \beta) = 1 \) and \( \sec(\alpha + \beta) = \frac{2}{\sqrt{3}} \). ### Step 1: Solve for \( \alpha - \beta \) Given that \( \tan(\alpha - \beta) = 1 \), we know that: \[ \alpha - \beta = 45^\circ + n \cdot 180^\circ \quad (n \in \mathbb{Z}) \] Since \( \alpha \) and \( \beta \) are positive angles, we can take \( n = 0 \): \[ \alpha - \beta = 45^\circ \] ### Step 2: Solve for \( \alpha + \beta \) Next, we have \( \sec(\alpha + \beta) = \frac{2}{\sqrt{3}} \). We know that: \[ \sec(x) = \frac{1}{\cos(x)} \] Thus, we can rewrite the equation as: \[ \cos(\alpha + \beta) = \frac{\sqrt{3}}{2} \] This implies: \[ \alpha + \beta = 30^\circ + m \cdot 360^\circ \quad (m \in \mathbb{Z}) \] Again, since \( \alpha \) and \( \beta \) are positive angles, we can take \( m = 0 \): \[ \alpha + \beta = 30^\circ \] ### Step 3: Set up the system of equations Now we have a system of equations: 1. \( \alpha - \beta = 45^\circ \) 2. \( \alpha + \beta = 30^\circ \) ### Step 4: Solve for \( \alpha \) and \( \beta \) We can add these two equations: \[ (\alpha - \beta) + (\alpha + \beta) = 45^\circ + 30^\circ \] This simplifies to: \[ 2\alpha = 75^\circ \] Thus, we find: \[ \alpha = \frac{75^\circ}{2} = 37.5^\circ \] ### Step 5: Solve for \( \beta \) Now, substitute \( \alpha \) back into one of the equations to find \( \beta \): Using \( \alpha + \beta = 30^\circ \): \[ 37.5^\circ + \beta = 30^\circ \] This gives: \[ \beta = 30^\circ - 37.5^\circ = -7.5^\circ \] Since \( \beta \) must be positive, we need to reconsider our assumption about \( \alpha + \beta \). ### Step 6: Re-evaluate the angles Since \( \alpha + \beta = 30^\circ \) is not valid, we should consider the periodic nature of the trigonometric functions. Instead, let's consider the next possible angle for \( \alpha + \beta \): If we take \( \alpha + \beta = 210^\circ \) (which is \( 30^\circ + 180^\circ \)), we can solve again: 1. \( \alpha - \beta = 45^\circ \) 2. \( \alpha + \beta = 210^\circ \) Adding these: \[ 2\alpha = 255^\circ \implies \alpha = 127.5^\circ \] ### Conclusion The smallest positive value of \( \alpha \) that satisfies both equations is: \[ \alpha = 127.5^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

tan_(tan6 beta)(alpha+beta)=sqrt(3),tan(alpha-beta)=1 then

If 2tan alpha=3tan beta then tan(alpha-beta)=

If sin (alpha - beta) =1/2 and cos (alpha + beta) =1/2, where alpha and beta are positive acute angles, then alpha and beta are

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) then tan(alpha+2 beta)tan(2 alpha+beta)=

If 3 sin beta=sin(2alpha+beta) , then tan (alpha+beta)-2 tan alpha is

If sin (alpha + beta)=1, sin (alpha- beta)= (1)/(2) , then tan (alpha + 2beta) tan (2alpha + beta) =

If tan alpha = sqrt(3) and tan beta = (1)/(sqrt(3)) , then find the value of cot (alpha + beta) .

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .