Home
Class 14
MATHS
If (x+1/x)=5 , what is the value of (x^5...

If `(x+1/x)=5` , what is the value of `(x^5 + 1/x^5)` ?

A

1875

B

2525

C

2530

D

3120

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^5 + \frac{1}{x^5} \) given that \( x + \frac{1}{x} = 5 \). ### Step 1: Square the given equation We start with the equation: \[ x + \frac{1}{x} = 5 \] Now, we square both sides: \[ \left(x + \frac{1}{x}\right)^2 = 5^2 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = 25 \] Thus, \[ x^2 + \frac{1}{x^2} = 25 - 2 = 23 \] ### Step 2: Cube the original equation Next, we need to find \( x^3 + \frac{1}{x^3} \). We use the identity: \[ x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)\left(x^2 + \frac{1}{x^2}\right) - \left(x + \frac{1}{x}\right) \] Substituting the known values: \[ x^3 + \frac{1}{x^3} = 5 \cdot 23 - 5 \] Calculating this gives: \[ x^3 + \frac{1}{x^3} = 115 - 5 = 110 \] ### Step 3: Use the identity to find \( x^5 + \frac{1}{x^5} \) Now we can find \( x^5 + \frac{1}{x^5} \) using the identity: \[ x^5 + \frac{1}{x^5} = \left(x^3 + \frac{1}{x^3}\right)\left(x^2 + \frac{1}{x^2}\right) - \left(x + \frac{1}{x}\right) \] Substituting the values we have: \[ x^5 + \frac{1}{x^5} = 110 \cdot 23 - 5 \] Calculating this gives: \[ x^5 + \frac{1}{x^5} = 2530 - 5 = 2525 \] ### Final Answer Thus, the value of \( x^5 + \frac{1}{x^5} \) is: \[ \boxed{2525} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=3 then what is the value of x^(5)+(1)/(x^(5)) ?

If x+(1)/(x)=5 then what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x+1) ?