Home
Class 14
MATHS
What is the simplified value of (2/("cot...

What is the simplified value of `(2/("cot" A/2 + "tan"A/2))` ?

A

sin A

B

cos `A/2`

C

`cos^2A`

D

`2 "sin" A/2`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \frac{2}{\cot \frac{A}{2} + \tan \frac{A}{2}} \), we can follow these steps: ### Step 1: Rewrite cotangent and tangent in terms of sine and cosine We know that: \[ \cot \frac{A}{2} = \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} \quad \text{and} \quad \tan \frac{A}{2} = \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} \] Thus, we can rewrite the expression as: \[ \frac{2}{\frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} + \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}} \] ### Step 2: Find a common denominator To combine the terms in the denominator, we find a common denominator: \[ \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} + \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} = \frac{\cos^2 \frac{A}{2} + \sin^2 \frac{A}{2}}{\sin \frac{A}{2} \cos \frac{A}{2}} \] ### Step 3: Use the Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \cos^2 \frac{A}{2} + \sin^2 \frac{A}{2} = 1 \] Thus, the denominator simplifies to: \[ \frac{1}{\sin \frac{A}{2} \cos \frac{A}{2}} \] ### Step 4: Substitute back into the expression Now substituting back into our expression, we have: \[ \frac{2}{\frac{1}{\sin \frac{A}{2} \cos \frac{A}{2}}} = 2 \cdot \sin \frac{A}{2} \cos \frac{A}{2} \] ### Step 5: Use the double angle identity Using the double angle identity \( \sin 2\theta = 2 \sin \theta \cos \theta \): \[ 2 \sin \frac{A}{2} \cos \frac{A}{2} = \sin A \] ### Final Answer Thus, the simplified value of the expression \( \frac{2}{\cot \frac{A}{2} + \tan \frac{A}{2}} \) is: \[ \sin A \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the simplified value of ((cosec A)/(cot A + tan A )) ^(2) ?

What is the simplified value of (1/(sec A+ tan A))^2 ?

What is the simplified value of ("cosec"^4 A - cot^2 A )-(cot^4 A+ "cosec"^2A) ?

What is the simplified value of tan ((theta )/( 2)) + cot ((theta )/( 2)) ?

What is the simplified value of (3)/(cosec^(2)theta)+(5)/(1+tan^(2)theta)-2cos^(2)theta ?