Home
Class 14
MATHS
What is the simplified value of ("cosec"...

What is the simplified value of `("cosec"^4 A - cot^2 A )-(cot^4 A+ "cosec"^2A)` ?

A

0

B

5

C

6

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \left( \csc^4 A - \cot^2 A \right) - \left( \cot^4 A + \csc^2 A \right) \), we will follow these steps: ### Step 1: Rewrite the expression Start by rewriting the expression for clarity: \[ \csc^4 A - \cot^2 A - \cot^4 A - \csc^2 A \] ### Step 2: Group similar terms Group the terms involving \(\csc\) and \(\cot\): \[ (\csc^4 A - \csc^2 A) - (\cot^4 A + \cot^2 A) \] ### Step 3: Factor out common terms Factor out \(\csc^2 A\) from the first group and \(\cot^2 A\) from the second group: \[ \csc^2 A (\csc^2 A - 1) - \cot^2 A (\cot^2 A + 1) \] ### Step 4: Use Pythagorean identities Recall the Pythagorean identities: \[ \csc^2 A = 1 + \cot^2 A \] Thus, we can substitute \(\csc^2 A - 1\) with \(\cot^2 A\): \[ \csc^2 A \cdot \cot^2 A - \cot^2 A (\cot^2 A + 1) \] ### Step 5: Simplify the expression Now we can simplify the expression: \[ \cot^2 A \cdot \csc^2 A - \cot^4 A - \cot^2 A \] This can be rewritten as: \[ \cot^2 A (\csc^2 A - \cot^2 A - 1) \] ### Step 6: Substitute \(\csc^2 A\) Substituting \(\csc^2 A = 1 + \cot^2 A\): \[ \cot^2 A \left((1 + \cot^2 A) - \cot^2 A - 1\right) \] This simplifies to: \[ \cot^2 A (0) = 0 \] ### Final Answer Thus, the simplified value of the expression is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the simplified value of ((cosec A)/(cot A + tan A )) ^(2) ?

What is the simplified value of "cosec"^(6)A-cot^(6)A-3"cosec"^(2)Acot^(2)A ?

What is the simplified value of cosec^(6)A-cot^(6)A-3cosec^(2)Acot^(2)A ?

cosec A -2 cot 2A cos A=

tan A + cot A = 2 cosec 2A

The value of ("cosec" theta -cot theta)^(2) is

The value of (cosecA+cotA+1) (cosec A-cot A+1) -2 cosec A is:

" cosec 2x + cot 2x = cot x "