Home
Class 14
MATHS
If x+(1)/(x)=17, what is the value of (...

If `x+(1)/(x)=17`, what is the value of `(x^(4)+(1)/(x^(2)))/(x^(2)-3x+1)`?

A

`(2431)/(7)`

B

`(3375)/(7)`

C

`(3375)/(14)`

D

`(3985)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the equation given: 1. **Given Equation**: \[ x + \frac{1}{x} = 17 \] 2. **Square Both Sides**: We can square both sides of the equation to find \(x^2 + \frac{1}{x^2}\): \[ \left(x + \frac{1}{x}\right)^2 = 17^2 \] Expanding the left side: \[ x^2 + 2 + \frac{1}{x^2} = 289 \] Therefore, we have: \[ x^2 + \frac{1}{x^2} = 289 - 2 = 287 \] 3. **Find \(x^4 + \frac{1}{x^4}\)**: Now we can find \(x^4 + \frac{1}{x^4}\) using the identity: \[ x^4 + \frac{1}{x^4} = \left(x^2 + \frac{1}{x^2}\right)^2 - 2 \] Substituting the value we found: \[ x^4 + \frac{1}{x^4} = 287^2 - 2 \] First, calculate \(287^2\): \[ 287^2 = 82369 \] Thus: \[ x^4 + \frac{1}{x^4} = 82369 - 2 = 82367 \] 4. **Find \(x^2 - 3x + 1\)**: We need to evaluate \(x^2 - 3x + 1\). We already have \(x + \frac{1}{x} = 17\), which gives us \(x = 17 - \frac{1}{x}\). To find \(x^2\), we can use the equation: \[ x^2 = (x + \frac{1}{x})^2 - 2 = 17^2 - 2 = 289 - 2 = 287 \] Now substituting \(x\) into \(x^2 - 3x + 1\): \[ x^2 - 3x + 1 = 287 - 3(17) + 1 \] Calculate \(3(17)\): \[ 3(17) = 51 \] Thus: \[ x^2 - 3x + 1 = 287 - 51 + 1 = 237 \] 5. **Final Calculation**: Now we can substitute back into our original expression: \[ \frac{x^4 + \frac{1}{x^4}}{x^2 - 3x + 1} = \frac{82367}{237} \] 6. **Perform the Division**: Performing the division gives: \[ \frac{82367}{237} = 347 \] Thus, the final answer is: \[ \boxed{347} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=5 then what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x+1) ?

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If x^(2)-4x +1=0 , then what is the value of x^(3)+(1)/(x^(3)) ?