Home
Class 14
MATHS
What is the simplified value of "cosec"^...

What is the simplified value of `"cosec"^(6)A-cot^(6)A-3"cosec"^(2)Acot^(2)A`?

A

`-2`

B

`-1`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \csc^6 A - \cot^6 A - 3 \csc^2 A \cot^2 A \), we can follow these steps: ### Step 1: Use Trigonometric Identities Recall the identities: - \( \csc^2 A = 1 + \cot^2 A \) ### Step 2: Substitute \( \csc^2 A \) Let \( x = \cot^2 A \). Then, we can express \( \csc^2 A \) in terms of \( x \): \[ \csc^2 A = 1 + x \] ### Step 3: Rewrite the Expression Now, we can rewrite \( \csc^6 A \) and \( \cot^6 A \): \[ \csc^6 A = (1 + x)^3 \] \[ \cot^6 A = x^3 \] ### Step 4: Expand \( \csc^6 A \) Using the binomial theorem: \[ (1 + x)^3 = 1 + 3x + 3x^2 + x^3 \] ### Step 5: Substitute Back into the Expression Now substitute back into the original expression: \[ \csc^6 A - \cot^6 A - 3 \csc^2 A \cot^2 A = (1 + 3x + 3x^2 + x^3) - x^3 - 3(1 + x)x \] ### Step 6: Simplify the Expression Now simplify: \[ = 1 + 3x + 3x^2 + x^3 - x^3 - 3(1 + x)x \] \[ = 1 + 3x + 3x^2 - 3x - 3x^2 \] \[ = 1 + 3x - 3x = 1 \] ### Final Answer Thus, the simplified value of the expression is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the simplified value of cosec^(6)A-cot^(6)A-3cosec^(2)Acot^(2)A ?

What is the simplified value of ("cosec"^4 A - cot^2 A )-(cot^4 A+ "cosec"^2A) ?

What is the simplified value of ((cosec A)/(cot A + tan A )) ^(2) ?

What is the simplified value of (sqrt(sec^(2)theta+cosec^(2)theta))/(2) ?

sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=

The value of 5 cot^(2)A-"5 cosec"^(2)A is :

What is the simplified value of (3)/(cosec^(2)theta)+(5)/(1+tan^(2)theta)-2cos^(2)theta ?