Home
Class 14
MATHS
What is the simplified value of sqrt(...

What is the simplified value of
`sqrt((secA-1)/(secA+1))`?

A

`"cosec"A-cotA`

B

`secA-tanA`

C

`sec^(2)A`

D

`secA"cosec"A`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{\frac{\sec A - 1}{\sec A + 1}} \), we can follow these steps: ### Step 1: Rewrite secant in terms of cosine Recall that \( \sec A = \frac{1}{\cos A} \). Therefore, we can rewrite the expression as: \[ \sqrt{\frac{\frac{1}{\cos A} - 1}{\frac{1}{\cos A} + 1}} \] ### Step 2: Simplify the numerator and denominator Now, we simplify the numerator and denominator separately: - The numerator becomes: \[ \frac{1 - \cos A}{\cos A} \] - The denominator becomes: \[ \frac{1 + \cos A}{\cos A} \] Thus, the expression now looks like: \[ \sqrt{\frac{\frac{1 - \cos A}{\cos A}}{\frac{1 + \cos A}{\cos A}}} \] ### Step 3: Simplify the fraction Since both the numerator and denominator have the same denominator \( \cos A \), we can cancel it out: \[ \sqrt{\frac{1 - \cos A}{1 + \cos A}} \] ### Step 4: Rationalize the expression To simplify \( \sqrt{\frac{1 - \cos A}{1 + \cos A}} \), we can multiply the numerator and denominator by \( 1 - \cos A \): \[ \sqrt{\frac{(1 - \cos A)^2}{(1 + \cos A)(1 - \cos A)}} \] This simplifies to: \[ \sqrt{\frac{(1 - \cos A)^2}{1 - \cos^2 A}} = \sqrt{\frac{(1 - \cos A)^2}{\sin^2 A}} \] ### Step 5: Take the square root Taking the square root gives: \[ \frac{1 - \cos A}{\sin A} \] ### Step 6: Use trigonometric identities We know that: \[ \frac{1 - \cos A}{\sin A} = \tan\left(\frac{A}{2}\right) \] This is derived from the half-angle identities. ### Final Result Thus, the simplified value of \( \sqrt{\frac{\sec A - 1}{\sec A + 1}} \) is: \[ \tan\left(\frac{A}{2}\right) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the simplified value of ((1)/(secA+tanA))^(2) ?

Find the simplified value of-: tan^-1(1/(sqrt(x^2-1)))

What is the simplified value of [(4^(m+1/4) xx sqrt(2 xx 2^(m)))/(2sqrt(2^(-m)))]^(1/m) ?