Home
Class 11
MATHS
lim(x->-1) ([x]+ |x| ). (where [.] denot...

`lim_(x->-1) ([x]+ |x| )`. (where [.] denotes the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr-1)([x]+|x|). (where [.] denotes the greatest integer function)

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let Lim_(x rarr1)([x])/(x)=l and lim_(x rarr1)(x)/([x])=m where [ .] denotes the greatest integer function, then

The value of the lim_(x->0)x/a[b/x](a!=0)(where [*] denotes the greatest integer function) is

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

The value of the lim_(x->0)x/a[b/x](a!=0)(where [*] denotes the greatest integer function) is