Home
Class 12
MATHS
" If "f(x)=sqrt(x-3)," does "lim(x rarr3...

" If "f(x)=sqrt(x-3)," does "lim_(x rarr3)f(x)" exist? Give reache "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(x-3), " does "underset(xrarr3)"lim"f(x) exist ? Give reasons .

f(x)=x,x 0 then find lim_(x rarr0)f(x) if exists

f(x)={[(2)/(5-x),x =3 discuss lim_(x rarr3)f(x)

If f(x)=(1)/(|x|) prove that lim_(x rarr0)f(x) does not

Consider the function f (x) = (x^2 - 9)/(x-3), x ne 3 On the basis of the table does lim_(x rarr 3) f(x) exist? If so, find the limt.

if f(x)=((e^((x+3)ln27)^((x)/(27))-9))/((1-cos^(x)-27)/((x-3)tan(x-3))) if lim_(x rarr3)f(x) exist then lmbda is

If f(x)=(|x-1|)/(x-1) prove that lim_(x rarr1)f(x) does not exist.

If f(x) = (x^(2)-9)/(x-3) , find it Lim_(x to 3) f(x) exists .

If lim_(x rarr a)((f(x))/(g(x))) exists,then

f(x)={(ax+2, x 1):} , If lim_(x rarr1)f(x) exist then value of a is :