Home
Class 12
MATHS
The straight line xcos theta+y sin thet...

The straight line `xcos theta+y sin theta=2` will touch the circle `x^2 + y^2-2x = 0` , if

Promotional Banner

Similar Questions

Explore conceptually related problems

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2=0 if

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2x=0 if theta=n pi,n in IQ(b)A=(2n+1)pi,n in Itheta=2n pi,n in I(d) none of these

The straight line xcostheta+ysintheta=2 will touch the circle x^2+y^2-2x=0 ,if

Find the condition that the straight line x cos theta+ y sin theta =p may touch the parabola y^(2)= 4ax .

The line x + y tna theta = cos theta touches the circle x ^(2) + y ^(2) = 4 for

If the straight line ax + by = 2 ; a, b!=0 , touches the circle x^2 +y^2-2x = 3 and is normal to the circle x^2 + y^2-4y = 6 , then the values of 'a' and 'b' are ?

If the straight line ax + by = 2 ; a, b!=0 , touches the circle x^2 +y^2-2x = 3 and is normal to the circle x^2 + y^2-4y = 6 , then the values of 'a' and 'b' are ?

If the straight line represented by x cos alpha + y sin alpha = p intersect the circle x^2+y^2=a^2 at the points A and B , then show that the equation of the circle with AB as diameter is (x^2+y^2-a^2)-2p(xcos alpha+y sin alpha-p)=0

If the straight line represented by x cos alpha + y sin alpha = p intersect the circle x^2+y^2=a^2 at the points A and B , then show that the equation of the circle with AB as diameter is (x^2+y^2-a^2)-2p(xcos alpha+y sin alpha-p)=0

Prove that the straight line y = x + a sqrt(2) touches the circle x^(2) + y^(2) - a^(2)=0 Find the point of contact.