Home
Class 12
MATHS
" H."sin(tan^(-1)x),|x|<1" is equal to "...

" H."sin(tan^(-1)x),|x|<1" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

tan(sin^(-1)x)

sin(tan^-1x), |x|<1 is equal to :

Number of solutions of tan(sin^(-1)x)+sin(tan^(-1)x)=x is equal to

sin(cot^(-1)(tan(tan^(-1)x))),x in(0,1]

sin(cot^(-1)(tan(tan^(-1)x))),"x" in (0," 1]

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

(3 pi)/(2) The value of int_(0)^((3 pi)/(2))(|tan^(-1)tan x|-|sin^(-1)sin x|)/(|tan^(-1)tan x|+|sin^(-1)sin x|)dx is equal to

Value of sin{tan^(-1)x+tan^(-1)((1)/(x))}_( is )