Home
Class 12
MATHS
cos^(- 1)sqrt((a-x)/(a-b))=sin^(- 1)sqrt...

`cos^(- 1)sqrt((a-x)/(a-b))=sin^(- 1)sqrt((x-b)/(a-b))` is possible ,if

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : "cos"^(-1) ((b+a "cos"x)/(a+b "cos"x)) =2"tan"^(-1)(sqrt((a-b)/(a+b)) "tan" x/2)

If tanx=b/a , then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to (a) 2sinx//sqrt(sin2x) (b) 2cosx//sqrt(cos2x) (c) 2cosx//sqrt(sin2x) (d) 2sinx//sqrt(cos2x)

If tanx=b/a , then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to (a) 2sinx//sqrt(sin2x) (b) 2cosx//sqrt(cos2x) (c) 2cosx//sqrt(sin2x) (d) 2sinx//sqrt(cos2x)

If tanx=b/a , then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to (a) 2sinx//sqrt(sin2x) (b) 2cosx//sqrt(cos2x) (c) 2cosx//sqrt(sin2x) (d) 2sinx//sqrt(cos2x)

If tan x=(b)/(a), then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to (a)2sin x/sqrt(sin2x)(b)2cos x/sqrt(cos2x)(c)2cos x/sqrt(sin2x)(d)2sin x/sqrt(cos2x)

(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

2 tan ^(-1) (sqrt((a-b)/(a+b))tan""(x)/(2))=cos^(-1)""(acos x+b)/(a+b cos x)