Home
Class 12
MATHS
A variable plane is at constant distance...

A variable plane is at constant distance 3 from origin and meets the axis in `X,Y,Z` planes through `X,Y,Z` parallel to coordinate planes are made. If `P`be the point of intersection of above made planes, given `P(alpha, beta, gamma)` then `(alpha beta gamma)/(sqrt(alpha^(2)beta^(2)+beta^(2)gamma^(2)+gamma^(2)alpha^(2)))=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of x^3+px^2+qx+r=0 then alpha^(2)(beta+gamma)+beta^(2)(gamma+alpha)+gamma^(2)(alpha+beta)=

Evaluate: |[alpha, beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|

A variable plane is at a constant distance 3p from the origin and meets the coordinates axes in A,B and C if the centroid of triangle ABC is (alpha,beta,gamma ) then show that alpha^(-2)+beta^(-2)+gamma^(-2)=p^(-2)

Prove that |[[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[alpha^3,beta^3,gamma^3]]|= alpha beta gamma (alpha-beta)(beta-gamma)(gamma-alpha)

If the image of the point ( 1,-2,3) in the plane 2x + 3y -z =7 is the point ( alpha, beta , gamma ), then the value of alpha + beta + gamma is equal to

If alpha,beta,gamma are such that alpha+beta+gamma=2alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+gamma^(4)

If alpha, beta, gamma are the roots of x^(3) + x^(2) + x + 1 = 0 then (alpha - beta)^(2) + (beta - gamma)^(2) + (gamma - alpha)^(2) =

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If alpha,beta,gamma are the cube roots of p, then for any x,y,z(x alpha+y beta+z gamma)/(x beta+y gamma+z alpha)=