Home
Class 12
MATHS
The integral int(0)^(pi)sqrt(1+4"sin"^2...

The integral `int_(0)^(pi)sqrt(1+4"sin"^2(x)/(2)-4"sin"(x)/(2))` dx is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(pi)^(0)sqrt(1+4"sin"^(2)(x)/(2)-4 "sin"(x)/(2))dx equals ,

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to (a) pi-4 (b) (2pi)/3-4-sqrt(3) (c) (2pi)/3-4-sqrt(3) (d) 4sqrt(3)-4-(pi)/3

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to (a) pi-4 (b) (2pi)/3-4-sqrt(3) (c) (2pi)/3-4-sqrt(3) (d) 4sqrt(3)-4-(pi)/3

int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-2sin((x)/(2)))dx

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx equals

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx equals

The integral int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-4sin((x)/(2))dx) equal (1)pi-4(2)(2 pi)/(3)-4-4sqrt(3)(3)4sqrt(3)-4(4)4sqrt(3)-4-(pi)/(3)

The integral int_(0)^(x)sqrt(1+4sin^(2)""(x)/(2)-4sin""(x)/(2))dx equals-

int_(0)^(2pi)sqrt(1+"sin"x/2)dx=

int_(0)^(2pi)sqrt(1+"sin"x/2)dx=