Home
Class 12
MATHS
If g(x)=(x^(2)+2x+3) f(x),f(0)=5 and lim...

If `g(x)=(x^(2)+2x+3) f(x),f(0)=5 and lim_(x to 0) (f(x-5))/(x)=4`, then g'(0) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x) = (x^(2)+2x+3) f(x) and f(0) = 5 and lim_(x rarr 0) (f(x)-5)/(x) = 4, then g'(0) =

If g(x) = (x^(2)+2x+3), f(x) and f(0)=5 and lim_(xrarr0)(f(x)-5)/x = 4 then g'(o) is

If g(x)=(x^(3) - 2x + 4) f(x) and f(0) = 3 and lim(xrarr0) (f(x)-3)/x = 2 then g'(0) is:

If g(x) = (x^2 + 2x +3) f(x) and f(0) = 5 and underset( x to 0) (lim) (f(x) -5)/(x) =4 then g'(0) is….......... .

If f(x+y)=f(x)f(y) and f(x)=1+"xg(x) G(x)" , where lim_(xto0)g(x)=a and lim_(xto0)" G(x)=b . Then f'(x) is equal to :

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to

If f(x)=x^(5)+2x^(3)+2x and g is the inverse of f then g'(-5) is equal to