Home
Class 12
PHYSICS
Position-time relationship of a particle...

Position-time relationship of a particle executing simple harmonic motion is given by equation
`x=2sin(50pit+(2pi)/(3))` where x is in meters and time t is in seconds.
What is the position of particle at t=0 ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Position-time relationship of a particle executing simple harmonic motion is given by equation x=2sin(50pit+(2pi)/(3)) where x is in meters and time t is in seconds. What is the position of particle at t=1s ?

Position-time relationship of a particle executing simple harmonic motion is given by equation x=2sin(50pit+(2pi)/(3)) where x is in meters and time t is in seconds. What is the position of particle at t=1s ?

Position-time relationship of a particle executing simple harmonic motion is given by equation x=2sin(50pit+(2pi)/(3)) where x is in meters and time t is in seconds. What is the position of particle at t=1s ?

The displacement of a particle executing simple harmonic motion is given by x=3sin(2pit+(pi)/(4)) where x is in metres and t is in seconds. The amplitude and maximum speed of the particle is

The displacement of a particle executing simple harmonic motion is given by x=3sin(2pit+(pi)/(4)) where x is in metres and t is in seconds. The amplitude and maximum speed of the particle is

The position of a particle axecuting simple harmonic motion is given by x (t) = 2 cos ((pi)/(15) t - (pi)/(2)), where x is in centimetre and t is in seconds. The time period of the kinetic energy of the particle in second is

The motion of a particle executing simple harmonic motion is given by X = 0.01 sin 100 pi (t + 0.05) , where X is in metres andt in second. The time period is second is

The position of particle 'x' with respect to time at any instant 't' along x-axis is given by equation x=9t^(2) -t^(3) where x is in meter and t is in seconds. What will be the position of this particle when particle achieves maximum speed along x-axis.