Home
Class 11
MATHS
If f(x)=|[x+lambda,x,x] , [x,x+lambda,x]...

If `f(x)=|[x+lambda,x,x] , [x,x+lambda,x] , [x,x,x+lambda]|` then `f(12x)-f(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

|[x+lambda, 2x, 2x], [2x, x+lambda, 2x], [2x, 2x, x+lambda]| =(5x+ lambda)(lambda-x)^(2)

If |(x+lambda,x,x),(x,x+lambda,x),(x,x,x+lambda)| = 0, (lambda != 0) then a) x = - lambda//3 b) x = 3 lambda c)x = 0 d)None of these

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

If f(x)=|(x,lambda),(2lambda,x)| , then f(lambdax)-f(x) is equal to

Evaluate the following : |{:(x+lambda,x,x),(x,x+lambda,x),(x,x,x+lambda):}|

The period of the function f(x) = lambda| sin x| + lambda^(2) | cos x| + g (lambda) is (lambdai)/(2) , if lambda is

Let f(x) = lambda + mu|x|+nu|x|^2 , where lambda,mu, nu in R , then f'(0) exists if

If f(x)=(2018x-2019)/(x+lambda) and f(f(x))=x then lambda=

If f(x) = [x] + [-x], x ne 2 = lambda, x = 2 , then f is continuous at x = 2, provided lambda is equal to :