Home
Class 11
MATHS
Suppose the function f(x) satisfies the ...

Suppose the function `f(x)` satisfies the relation `f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R` and is differentiable for all `xdot` Statement 1: If `f^(prime)(2)=a ,t h e nf^(prime)(-2)=a` Statement 2: `f(x)` is an odd function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose the function f(x) satisfies the relation f(x+y^(3))=f(x)+f(y^(3)).AA x,y in R and is differentiable for all x .Statement 1 If f'(2)=a, then f'(-2)=a Statement 2:f(x) is an odd function.

Consider function f(x) satisfies the relation f(x+y^(3))=f(x)+f(y^(3))AAx,yinRand differentiable for all x . Statement I If f'(2)=a then f'(-2)=a f(x) is an odd function.

Consider function f(x) satisfies the relation f(x+y^(3))=f(x)+f(y^(3))AAx,yinRand differentiable for all x . Statement I If f'(2)=a then f'(-2)=a f(x) is an odd function.

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

A real valued function satisfies the relation f(x+y)=f(x)+f(y)+(e^x-1)(e^y-1) , AAx,y in R . If f'(0) = 2, find f(x).

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

If f(x) is a function satisfies the relation for all x,y in R,f(x+y)=f(x)+f(y) and if f'(0)=2 andfunction is differentiable every where,then find f(x)

If the function f satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in Ra n df(0)!=0 , then f(x) is an even fu n c t ion f(x) is an odd fu n c t ion If f(2)=a ,t h e nf(-2)=a If f(4)=b ,t h e nf(-4)=-b