Home
Class 12
MATHS
If y=at^2 + 2bt + c and t=ax^2 + 2bx + ...

If `y=at^2 + 2bt + c and t=ax^2 + 2bx + c`, then `(d^2y)/(dx^2)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=at^(2)+2bt+c and t=ax^(2)+2bx+c then (d^(2)y)/(dx^(2)) equals

If y=at^(2)+2bt-c and t=ax^(2)+2bx+c then (d^(3)y)/(dx^(3)) equals

If y=at^2+2bt-c and t = ax^2+2bx+c , then (d^3y)/(dx^3) equals

If y=at^2+2bt-c and t = ax^2+2bx+c , then (d^3y)/(dx^3) equals

If y^2 =ax^2 + bx +c , then y^3(d^2y)/(dx^2) is

If y=at^(2)+2bt+c&t=ax^(2)+2bx+c then (d^(3)y)/(dx^(3)) equals 24a^(2)(at+b)(b)24a(ax+b)^(2)24a(at+b)^(2)(d)24a^(2)(ax+b)

If y =sin (ax^(2) +bx +c ) then (dy)/(dx) =

If y = ax^(n+1)+bx^(n+1) then x^2(d^2y)/(dx^2) is equal to

If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))