Home
Class 12
MATHS
Suppose f is a derivable function tha...

Suppose `f` is a derivable function that satisfies the equation `f(x+y)=f(x)+f(y)+x^2y+x y^2` for all real numbers `x\ a n d\ y` . Suppose that `(lim)_(x->0)(f(x))/x=1,\ fin d` `f(0)` b. `f^(prime)(0)` c. `f^(prime)(x)` d. `f(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f is a function that satisfies the equation f(x+y)=f(x)+f(y)+x^(2)y+xy^(2)? for all real numbers x and y. If lim_(x rarr0)(f(x))/(x)=1 then

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

Let f : R rarr R be a differentiable function satisfying f(x+y)=f(x) + f(y) +x^2y+xy^2 for all real number x and y . If lim_(x rarr 0)(f(x))/x = 1 , then The value of f'(3) is

Let f : R rarr R be a differentiable function satisfying f(x+y)=f(x) + f(y) +x^2y+xy^2 for all real number x and y . If lim_(x rarr 0)(f(x))/x = 1 , then The value of f(9) is

Suppose a differntiable function f(x) satisfies the identity f(x+y)=f(x)+f(y)+xy^(2)+xy for all real x and y .If lim_(x rarr0)(f(x))/(x)=1 then f'(3) is equal to

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?