Home
Class 11
MATHS
If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)...

If `y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx)` is equal to (a) `y` (b) `y+(x^n)/(n !)` (c) `y-(x^n)/(n !)` (d) `y-1-(x^n)/(n !)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = 1 +x +(x^2)/(2!)+x^3/(3!)+....+ x^n(n!) then (dy)/(dx) is equal to

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(x^(n))/(n!), then (dy)/(dx) is equal to (a) y(b)y+(x^(n))/(n!)(c)y-(x^(n))/(n!) (d) y-1-(x^(n))/(n!)

If y=1+x+(x^(2))/(2!)+(x^(2))/(3!)+……+(x^(n))/(n!) then (dy)/(dx) =…………

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+....+(x^(n))/(n!) , then show that (dy)/(dx)+(x^(n))/(n!)=y