Home
Class 7
MATHS
If x=2 and y=4 then x^(y/x)+y^(x/y)=...

If `x=2` and `y=4` then `x^(y/x)+y^(x/y)=` ______

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=2\ \ and y=4, then (x/y)^(x-y)+\ (y/x)^(y-x)= (a) 4 (b) 8 (c) 12 (d) 2

If x=2 and y=4, then ((x)/(y))^(x-y)+((y)/(x))^(y-x)=4(b)8(c)12(d)2

If x=2 and y=4 , then ((x)/(y))^(x-y)+((y)/(x))^(y-x) =________.

If (x+y) = 12 and (x-y) = 4 then (2x - 4y) = ?

Find the values of x and y if X = Y, where X = [(x + 10, y^2 + 2y),(0, -4)] and Y = [(3x+4, 3),(0, y^2 - 5y)] .

If x^(y)=y^(x) show that (x/y)^(x/y)=x^((x)/(y)-1) if further x=2y then prove that y=2

If (3)/(x+y)+(2)/(x-y)=2 and (9)/(x+y)-(4)/(x-y)=1 then what is (x)/(y) equal to ?

Statement 1: The equations of the straight lines joining the origin to the points of intersection of x^(2)+y^(2)-4x-2y=4 and x^(2)+y^(2)-2x-4y-4=0 is x-y=0 . Statement 2: y+x=0 is the common chord of x^(2)+y^(2)-4x-2y=4 and x^(2)+y^(2)-2x-4y-4=0