Home
Class 12
MATHS
Consider a real-valued function f(x) sat...

Consider a real-valued function f(x) satisfying `2f(x y)=(f(x))^y+(f(y))^xAAx , y in Ra n d(1)=a ,w h e r ea!=1.` Prove that `(a-1)` `sum_(i=1)^nf(i)=a^(n+1)-a`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a real-valued function f(x) satisfying 2f(x y)=(f(x))^y+(f(y))^xAAx , y in Ra n df(1)=a ,w h e r ea!=1. Prove that (a-1) sum_(i=1)^nf(i)=a^(n+1)-a

Consider a real-valued function f(x) satisfying 2f(x y)=(f(x))^y+(f(y))^xAAx , y in Ra n df(1)=a ,w h e r ea!=1. Prove that (a-1) sum_(i=1)^nf(i)=a^(n+1)-a

Consider a real-valued function f(x) satisfying 2f(x y)=(f(x))^y+(f(y))^xAAx , y in Ra n df(1)=a ,w h e r ea!=1. Prove that (a-1) sum_(i=1)^nf(i)=a^(n+1)-a

Consider a real-valued function f(x) satisfying 2f(xy)=(f(x))^(y)+(f(y))^(x)AA x,y in R and (1)=a, where a!=1 Prove that (a-1)sum_(i=1)^(n)f(i)=a^(n+1)-a

Consider a real valued function f(x) satisfying 2f(xy)=(f(x))^(y)+(f(y))^(x) AA x , y in R and f(1)=a where a != 1 then (a-1) sum_(i=1)^(n) f(i)=

Consider a real-valued function f(x) satisfying 2f(xy) =(f(x))^(y)+ (f(y))^(x) AA x, y in R and f(1) = a where a ne 1 then (a-1)sum_(i=1)^(n)f(i)= a) a^(n)-1 b) a^(n+1)+1 c) a^(n)+1 d) a^(n+1) -a

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

Let a real valued function f satisfy f(x+y)=f(x)f(y)AA x,y in R and f(0)!=0 Then g(x)=(f(x))/(1+[f(x)]^(2)) is

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=