Home
Class 11
MATHS
Prove that: sin5A=5sinA-20sin^(3)A+16s...

Prove that:
`sin5A=5sinA-20sin^(3)A+16sin^(5)A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Convert sin5A+sinA into product form and show that sin5A=5sinA-20sin^3A +16sin^5A

Prove that sin3A=3sinA-4sin^3 A

Prove that, sin5A=5cos^(4)AsinA-10cos^(2)Asin^(3)A+sin^(5)A

Prove that: sinA.sin(60^(@)+A).sin(60^(@)-A)=1/4sin3A

prove that : (sinA+2sin3A+sin5A)/(sin3A+2sin5A+sin7A)=(sin3A)/(sin5A)

Prove that: sin(pi/5)sin( (2pi)/5)sin(3pi/5)sin(4pi/5)=5/(16)

If theta be any real, prove that : sin5 theta= 5sin theta-20 sin^3 theta+16 sin^5 theta .

Prove that: (cos5A+cos3A+cosA)/(sin5A-sin3A+sinA)=cotA

Prove that: sinA+sin2A+sin4A+sin5A= 4sin3A. cosA/2.cos(3A)/(2)

Prove that: (sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A)=tan4A