Home
Class 12
MATHS
If 3^(x)=81 and 2^(x+y)=64, then (x)/(y)...

If `3^(x)=81 and 2^(x+y)=64`, then `(x)/(y)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3^(x+y) =81 and 81^(x-y) = 3 , then the value of x and y are:

if (x-y)^3=216 and (x-y)^5=32 , then find x^3-y^3 . The following steps are involved in solving the above problem. Arrange them in sequential order. (A) Therefore, x-y=6 and x+y=2 . (B) Solving x-y=6 and x+y=2rArrx=4, y=-2 . (C) x^3-y^3=64-(-2)^3=64+8=72 (D) (x-y)^3=216rArr(x-y)^3=6^3rArr x-y=6 and (x+y)^5=32rArr (x+y)^5=2^5rArr x+y=2 .

If x in (-pi, pi) such that y=1 +|cos x|+|cos^(2)x|+|cos^(3)|+ …. And 8^(y)=64 , then y =

If x^(3)-y^(3)=81 and x-y=3, what is the value of x^(2)+y^(2) ?

If x^(3) +x^(2) y +xy^(2) +y^(3) =81,then (dy)/(dx) =