Home
Class 12
MATHS
If the function f(x)=(Ksinx+2cosx)/(sinx...

If the function `f(x)=(Ksinx+2cosx)/(sinx+cosx)` is strictly increasing for all values of `x ,` then `K<1` (b) `K >1` `K<2` (d) `K >2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x)=(K sin x+2cos x)/(sin x+cos x) is strictly increasing for all values of x, then K 1K 2

If the function f(x) = (K sin x + 2 cos x)/(sin x + cos x) is strictly increasing for all values of x, then

If the function f(x)=(Ksinx+2cosx)/(sinx+cosx) is strictly increasing for all values of x , then (a) K (b) K >1 (c) K (d) K >2

If the function f(x)=(Ksinx+2cosx)/(sinx+cosx) is strictly increasing for all values of x , then (a) K (b) K >1 (c) K (d) K >2

If the function f(x)=(Ksinx+2cosx)/(sinx+cosx) is strictly increasing for all values of x , then (a) K (b) K >1 (c) K (d) K >2

If the function f(x)=(Ksinx+2cosx)/(sinx+cosx) is increasing for all values of x then

The function f(x)=(lambdasinx+2cosx)/(sinx+cosx) is increasing, if

The function f(x)=sinx+cosx will be

The function f(x)=x^(3)+6x^(2)+(9+2k)x+1 is strictly increasing for all x if

The function f(x)=(sinx)/(sinx-cosx) is discontinuous at -