Home
Class 12
MATHS
If a^(2)x^(4) + b^(2)y^(4)=c^(6), then m...

If `a^(2)x^(4) + b^(2)y^(4)=c^(6)`, then maximum value of xy is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(2))/(sqrt(ab)) (b) (c^(3))/(ab)(c^(3))/(sqrt(2ab)) (d) (c^(3))/(2ab)

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(3))/(2ab) (b) (c^(3))/(sqrt(2ab)) (c) (c^(3))/(ab) (d) (c^(3))/(sqrt(ab))

If x+y=4, then maximum value of xy is

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (a) (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a^2x^4+b^2y^4=c^6 then the maximum value of xy is

If a^(2)x^(4)+b^(2)y^(4)=c^(6)(a,b,x,y,cgt0) then the maximum value of xy is