Home
Class 9
MATHS
If polynomial 16x^4-24x^3+41x^2-mx+16 be...

If polynomial `16x^4-24x^3+41x^2-mx+16` be a perfect square, then the value of 'm' is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the polynomial 4x^(4)+12x^(3)+17x^(2)+mx+4 be a perfect square, then find the value of m

If , 4x = sqrt5+2 , then the value of (x-1/(16x)) is

If (1)/(x^(4))-(6)/(x^(3))+(13)/(x^(2))+(m)/(x)+ n is a perfect square, find the values of m and n.

If the polynomial 4x^(3)-16x^(2)+ax+7 is exactly divisible by x-1, then find the value of a. Hence factorise the polynomial.

If the roots of equations x^(2) - mx+ 16=0 are equal then the value of m is:

For what value of K is 16x^(2) + 24xy + K a perfect square

If ( x - 1 ) is the factor of the polynomial ( x^3 - 2x^2 + mx - 4 ) then find the value of m .

If the value of the polynomial x^4 + 2x^3 - 3x^2 + mx -1 is 21 when x = 2 , then find m .