Home
Class 12
MATHS
If log(10)2, log(10)(2^(x)-1) and log(10...

If `log_(10)2, log_(10)(2^(x)-1) and log_(10)(2^(x)+3)` are three consecutive terms of an A.P, then the value of x is

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10)2, log_(10) (2^(x)-1) and log_(10) (2^(x) + 3) are three consecutive terms of an A.P for

If log_(10)2,log_(10)(2^(x)-1),log_(10)(2^(x)+3) are three consecutive terms of an AP, then which one of the following is correct?

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If log_10 2, log_10(2^x- 1) and log_10(2^x+3) are in A.P., then find the value of x.

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1