Home
Class 11
MATHS
(lim)(n->oo)(1^2+2^2+3^2++n^2)/(n^3) is ...

`(lim)_(n->oo)(1^2+2^2+3^2++n^2)/(n^3)` is equal to a. 1 b . c. 1/3 d. 0

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(n->oo)(n !)/((n+1)!+n !) is equal to a. 1 b . 0 c. 2 d. 1/2

(lim_(n rarr oo)(1^(2)+2^(2)+3^(2)++n^(2))/(n^(3)) is equal to a.1b*c*1/3d.0

lim_(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))/(n^(3)) is equal to

The value of (lim)_(n->oo){(1+2+3+...+n)/(n+2)-n/2}\ is a. 1 b . -1 c. 1/2 d. -1/2

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals a. 0 b. 1/3 c. 1/2 d.1

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

lim_(n->oo){1/(1-n^2)+2/(1-n^2)+......n/(1-n^2)} is equal to (a) 0 (b) -1/2 (c) 1/2 (d) none of these

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -