Home
Class 12
MATHS
If ai > 0 for i=1,2,…., n and a1 a2 … a...

If `a_i > 0` for i=1,2,…., n and `a_1 a_2` … `a_(n=1)` , then minimum value of `(1+a_1) (1+a_2)` ….. `(1+a_n)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3..... a_n in R^+ and a_1.a_2.a_3.........a_n = 1, then minimum value of (1+a_1 + a_1^2) (1 + a_2 + a_2^2)(1 + a_3 + a_3^2)........(1+ a_n + a_n^2) is equal to :-

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If |a_i| < 1,lamda_i geq0 for i=1,2,3,...,n and lambda_1+lamda_2+...lambda_n=1 then the value of |lambda_1 a_1+lambda_2 a_2+......+lambda_n a_n| is

If roots of an equation x^n-1=0a r e1,a_1,a_2,..... a_(n-1), then the value of (1-a_1)(1-a_2)(1-a_3)(1-a_(n-1)) will be n b. n^2 c. n^n d. 0

If roots of an equation x^n-1=0a r e1,a_1,a_2,..... a_(n-1), then the value of (1-a_1)(1-a_2)(1-a_3)(1-a_(n-1)) will be n b. n^2 c. n^n d. 0

If roots of an equation x^n-1=0 are 1,a_1,a_2,........,a_(n-1) then the value of (1-a_1)(1-a_2)(1-a_3)........(1-a_(n-1)) will be (a) n (b) n^2 (c) n^n (d) 0

If a_n>1 for all n in N then log_(a_2) a_1+log_(a_3) a_2+.....log_(a_1)a_n has the minimum value of